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Introduction

For centuries, empirical evidence dominated 
the practice of medicine.  Historically, clini-
cal decision making was largely based on 
clinical experience, gained through trial and 
error.  Despite the long history of research 
in medicine, approaches to incorporating 
the knowledge gained from basic and clini-
cal research into the practice of medicine 
were generally non-standardized and sub-
jective until recently.  The utilization of re-

search evidence in diagnosing and treating 
patients was determined by the individual 
physician, and, if incorporated, would have 
been alongside clinical experience and per-
sonal beliefs.

The use of evidence-based methods 
for both teaching and practicing medicine 
is founded in clinical epidemiology, and 
chronologically follows just behind evi-
dence-based policies and guidelines, first 
published by David Eddy in a series of pa-
pers in the Journal of the American Medical 
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The current paper discusses the use of genomics in the context of the 
changing landscape of clinical practice and modern medicine. Medi-
cal practice has shifted considerably over the past few decades, from 
empirical to evidence-based to personalized medicine, and the transi-
tion from reliance on observation to measureable parameters.  Scien-
tific innovation is required to collect an ever-increasing number and 
variety of data points and sophisticated analyses capable of distilling 
vast datasets into meaningful information.  The next phase of innova-
tion seeks to personalize disease management, in particular through 
genomics in oncology.  With expanding use of genomics in medicine, 
and several initiatives collecting genomic data at the population level, 
education of patients and physicians is critical for data utility. By com-
bining genomic and clinical data, bioinformatics approaches can be 
applied to developing individualized or targeted therapies. Breast can-
cer provides an example through which to understand the evolution 
of genomic data from pure science to clinical utility.  From intrinsic 
subtype classification to development of multigene panels estimating 
recurrence risk, new studies, such as the FLEX trial, will expand to 
evaluate the whole transcriptome of tumours. This approach will en-
able discovery of novel gene signatures and ultimately pave the way 
toward a personalized approach to breast cancer management.  Con-
clusion. Despite the potential for genomics to personalize treatments, 
a number of challenges remain to fully integrate these types of large 
datasets in a manner that provides clinicians and patients with mean-
ingful, actionable information. However, if challenges are addressed, 
precision medicine has the capacity to transform patient care. 
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Association (1-4). It concurrently de-em-
phasizes intuition and unsystematic clinical 
experience as rationale for clinical decision 
making (5). A shift toward evidence-based 
medicine has gained attention over the past 
two decades (6), seeking to integrate clinical 
expertise, the patient’s personal preferences 
and the best available evidence in making 
health care decisions.  Now an umbrella term 
“evidence-based medicine” captures both 
population- and individual-level decisions, 
this practice emphasizes the importance of 
incorporating evidence from formalized re-
search into clinical decision making.

Evidence-based medicine is not without 
shortcomings (7). Evidence used in prac-
tice has been collected from large cohorts of 
patients, from which data are summarized 
into an expected response of the average pa-
tient from a given population (8). Although 
far more informative and accurate than its 
predecessors of intuition and the “art of 
medicine”, the unfortunate consequence of 
this approach is that outliers are not repre-
sented, and they may be unlikely to respond 
similarly to the average patient for any given 
treatment.  

Precision or personalized medicine, 
in contrast, focuses on the individual and 
seeks to improve health outcomes by inte-
grating a huge variety and number of data 
points, from genomics to environmental 
and lifestyle factors, in order to provide an 
individualized approach to health care. De-
spite a lofty set of long-term goals, includ-
ing earlier detection and better monitoring 
of disease symptoms, prediction of disease 
in asymptomatic individuals, more accurate 
prediction of treatment responses, improved 
disease surveillance, and prevention of dis-
ease, when possible, precision medicine has 
its own set of challenges and limitations. 
Some of these include small sample sizes (“n 
of 1” studies), the technological capability 
required to compile large datasets, such as 
gene expression data or full exome sequenc-

ing, and the informatics needed to distil vast 
amounts of data into clinically useful mea-
surements.

There are strengths and weaknesses to 
both of these approaches, and integration 
of the strengths of both toward ‘evidence-
based precision medicine’ will be compli-
mentary and provide the best possible treat-
ment for patients. Nonetheless, there are 
challenges to the integration of these two ap-
proaches. These include revisions to medical 
education and training programs, including 
training additional experts in clinical bioin-
formatics to interpret the large data sets that 
will be generated, and education of clinical 
professionals to stay current with the ever 
changing body of knowledge and to address 
the increasingly multidisciplinary practice of 
medicine.  However, the benefits of success-
ful integration of these approaches may be 
an ultimate shift in emphasis from reactive to 
proactive medicine, and a focus on preven-
tion, rather than treatment, of disease (7). 

Here, we will explore the challenges and 
progress of integrating genomics into clini-
cal practice and several initiatives in various 
countries for large-scale genomic data col-
lection at the population level. We will use 
breast cancer as an example through which 
to demonstrate the progression of genomic 
data into clinical utility and highlight how ge-
nomics and clinical data are being integrated 
for the discovery of new genomic signatures 
with the potential to provide individualized 
insights into disease management. 

Medical Science: From Observation to 
Measurement

In addition to shifting paradigms to the 
practice of medicine, the science of medi-
cine has transitioned from dependence on 
observation, empirical knowledge, and pa-
tient-reported symptoms to measurable pa-
rameters. This changing landscape has par-
alleled scientific and technological advances 
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that continue to propel the field forward and 
allow for the collection of an ever-increasing 
number and variety of data points, enabling 
improved understanding of health and dis-
ease, as well as treatment options. For ex-
ample, in a span of only a few decades, di-
agnostic tests have graduated from use of 
the microscope to visualize changes in cel-
lularity that might indicate infection or in-
flammation to modern techniques, such as 
molecular testing, rapid detection and quan-
tification of pathogens, automated blood 
chemistry panels, genetic and genomic 
testing, and sophisticated medical imaging. 
Furthermore, novel ways of measuring out-
comes are moving from the idea of treating 
the disease to improving the patient’s quality 
of life. Hospitals and healthcare systems are 
becoming more interested in patient-report-
ed outcomes as a way of measuring progress 
and success. All of these datasets require so-
phisticated and sometimes complex analy-
ses capable of distilling the mountain of in-
formation down to an actionable, or at least 
measurable, outcome.  

Advances in Science and Technology

Advances in technology are making it pos-
sible to diagnose diseases, including cancer, 
earlier than ever before. For example, im-
provements in radiology and medical im-
aging have led to an uptick in early breast 
cancer diagnoses (9). Cancer Research UK 
reports that 31% of female invasive breast 
cancer cases in England are now detected 
by screening (10). Women diagnosed by this 
method are overwhelmingly Stage I-II, and 
with early treatment have observed steadi-
ly improving breast cancer survival since 
the 1990s (11). Despite these statistics, the 
American Medical Association (AMA) rec-
ommendation of regular mammographic 
screening for all women starting at age 40 
has become controversial in the last decade. 
In November 2009, the US Preventative Ser-

vices Task Force (USPSTF) recommended 
that screening mammograms should start at 
age 50 instead of 40 for women of average 
risk (12). The rationale was that although 
screen detection has improved the diagnosis 
of breast cancer, the rate of false-positive re-
sults was more common in women aged 40-
49, resulting in unintended consequences 
such as psychological harm and unnecessary 
imaging tests and biopsies in women with-
out cancer. The Breast Cancer Surveillance 
Consortium recently evaluated 1,682,504 
digital screening mammograms from 2007 
to 2013 and confirmed that to be true (13). 
They determined that the while screen de-
tection has increased the rate at which ab-
normal findings (AIR) are identified, since 
switching from film to digital images (10.0% 
in 2008 to 11.6%, Table 3), the proportion 
of these cases correctly detecting invasive 
cancer has declined from 90.3% specificity 
in 2008 to 88.9% in the current study. 

Although many more women are now 
being treated for breast cancer, there has 
been no concomitant increase in survival 
benefit as a population (11). The USPSTF 
suggested that mammograms now detect 
small tumours, which previously would have 
gone undetected in the patient’s lifetime, 
and unnecessary early treatment is pervad-
ing. In a pre-screening era these tumours, 
even untreated, may have posed minimal 
risk to the patient. Now the challenge is to 
identify which tumours are biologically low 
risk to appropriately spare patients from 
over-treatment, versus the tumours that are 
caught at a very early stage but are biologi-
cally high risk and require treatment. 

In order to accurately distinguish high 
risk from low risk tumours, as well as to 
identify effective therapies, appropriate bio-
logical markers are needed. The same muta-
tions may predominate in multiple cancers, 
and initiatives like The Cancer Genome Atlas 
(National Institutes of Health) are showing 
that there is substantial heterogeneity of ma-
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lignant drivers, even within the same ‘type’ 
of cancer (8), which is still classified accord-
ing to its site of origin, as it has been histori-
cally. Heterogeneity of treatment responses 
can be found across all cancer types, but has 
the potential to be resolved with new biolog-
ical marker discovery. Biological markers of 
cancer aggressiveness or treatment response 
have been identified in nearly every cancer 
and correlated to survival. Expanding avail-
ability of targeted therapies provide further 
opportunity to correlate genomic changes in 
the tumour with treatment responses, lead-
ing to improved understanding of targetable 
pathways involved in disease progression. 
The discovery of accurate biological mark-
ers has the potential to ultimately change 
the way cancer is described, diagnosed and 
treated, from a disease classified by its tissue 
of origin to an individualized classification 
based on a particular set of biological char-
acteristics.  

Although the development of novel and 
targeted therapeutics in some cancers has 
been made possible by the discovery of sin-
gle gene mutations (genetics), other cancers 
rely on expression profiles that are composed 
of many genes (genomics). In breast cancer, 
advances have been driven by expression 
profiles more than single gene mutations. 
Although the heterogeneity and complex-
ity of breast cancer has been recognized for 
some decades, the field shifted substantially 
with the publication of microarray-based 
gene expression profiles demonstrating this 
heterogeneity at the molecular level and the 
sub classification of breast cancer into mo-
lecular subtypes (14-16). These subtypes, 
luminal A, luminal B, normal breast-like, 
HER2, and basal-like (15, 17, 18), have 
distinct clinical-pathological features, risk 
factors, responses to therapy, and clinical 
outcomes, demonstrating the clinical utility 
of molecular profiling. Following this dis-
covery was the development of multigene 
panels to assess molecular characteristics 

of tumours and predict risk of recurrence 
in patients with early stage disease. Histori-
cally, clinical-pathological factors (patient 
age, tumour size, histopathologic features, 
lymph node involvement) have been used to 
estimate probability of breast cancer recur-
rence; however, there has been substantial 
interest in developing molecular assays that 
more accurately predict clinical outcome, 
thereby selecting patients who will most 
benefit from more aggressive therapies, 
while avoiding overtreatment in patients 
with comparatively low risk of distant re-
currence. Presumably, selection of a com-
bination of genes that provide information 
about a tumour’s metastatic potential will 
most accurately predict distant recurrence 
in that patient. Several commercially-avail-
able molecular assays have been developed 
with the aim of providing this information 
(19).  These assays use a variety of platforms, 
including reverse-transcriptase PCR (Onco-
typeDX, Breast Cancer Index, EndoPredict 
assays), Nanostring technology (Prosigna 
assay), and microarray technology (Mam-
maPrint assay), for quantification of gene 
expression (19).

The first FDA-cleared multigene test, 
MammaPrint, uses a combined profile of 70 
genes to assess metastatic potential of the tu-
mour (20), thereby predicting a patient’s risk 
of distant recurrence. The genes that com-
prise this signature function in proliferation, 
cell cycle dysregulation, invasion, angiogen-
esis, growth, and resistance to apoptosis 
(21). Genes were selected from the full tran-
scriptomes of archived tumour specimens 
from patients without any systemic therapy 
(endocrine or chemotherapy) who either 
had a poor prognosis (distant metastasis 
within the first five years) or a good prog-
nosis (no distant metastasis within the first 
five years).  Using unsupervised hierarchical 
clustering, a signature of 70 genes was de-
veloped, representing the most differentially 
expressed genes between these two groups 
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of patients (20).  The 70-gene signature was 
further validated in subsequent studies (22-
26), and clinical utility was assessed in the 
prospective, randomized MINDACT trial, 
which compared outcomes following risk 
assessment by genomic or clinical param-
eters (27). The MINDACT trial demonstrat-
ed that patients at low genomic risk of recur-
rence by the 70-gene signature could safely 
forego chemotherapy (27). The companion 
molecular subtyping assay to MammaPrint 
uses an 80-gene signature (BluePrint) to 
sub-categorize breast tumours as Luminal-, 
HER2-, or Basal-type (28-30). Compared 
with standard clinical subtyping, molecular 
assessment provides information about the 
functionality of the dominant molecular 
pathway in a tumour, and has been shown in 
studies to provide more accurate classifica-
tion, as indicated by chemotherapy respons-
es (29, 31). These assays demonstrate the 
clinical utility of genomics in breast cancer.

Biomarker discovery provides new op-
portunities for treatment personalization 
with advancing targeted therapeutics. Al-
though using the immune system to treat 
cancer has a history dating from the late 
nineteenth century (32), cancer immuno-
therapy research and available therapies 
have exploded in recent years (33, 34). Im-
munotherapies, including checkpoint inhib-
itors, have shown remarkable success in gen-
erating durable responses in some patients, 
even in those for whom no other treatments 
were effective. However, these therapies 
have been underwhelming in others, and 
identification of biomarkers that accurately 
predict which patients will benefit from par-
ticular therapies will be crucial to ensuring 
more widespread success of these agents. 
Like other targeted therapies, immunother-
apy is not a ‘one size fits all’ approach to can-
cer treatment. Although treatment success 
rates are higher in some cancers than oth-
ers, immune checkpoint inhibitors are also 
not cancer site-specific. A variety of factors 

likely contribute to its success or failure, and 
understanding these factors will enable im-
proved patient selection. The first FDA ap-
proval of an immune checkpoint inhibitor, 
pembrolizumab (Keytruda), which targets 
programmed death protein 1 (PD-1) on the 
surface of immune cells, thereby improving 
immune responses, was for patients with ad-
vanced melanoma. Since then, however, this 
inhibitor has been approved for use in at 
least 12 types of cancer and in patients with 
a common biomarker (tumours identified as 
microsatellite instability-high or mismatch 
repair deficient), irrespective of the cancer’s 
site of origin (https://www.fda.gov/news-
events/newsroom/pressannouncements/
ucm560167.htm). With improved accuracy 
of biological markers and patient selection, 
it is possible that the success of immuno-
therapies will be expanded into cancers for 
which these treatment regimens have previ-
ously had limited success, including breast 
cancer (35, 36). It is likely that identifying 
the most predictive biomarkers or combina-
tion of biomarkers will require integration 
of tumour biology and host immune factors, 
merging genomics and immunology.

Innovation in Data Capture and 
Analysis

Integration of datasets consisting of imag-
ing, molecular, genetic/genomic, cellular, 
organismal, environmental, family history 
and lifestyle data will be required in order to 
truly personalize medicine. However, learn-
ing and integrating the ever-growing mass 
of scientific discoveries and synthesizing 
it into an actionable recommendation will 
require immense data processing capacity. 
IBM Research announced in 2007 that the 
computer IBM Watson was taking on medi-
cal science. Watson would apply its DeepQA 
open-domain question answering technolo-
gy to provide an evidence-based clinical de-
cision support system. Watson uses natural 
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language processing and machine learning 
to analyze unstructured information, over-
coming the challenges with the structured 
data of traditional expert systems. It gen-
erates a list of possible questions and uses 
abductive reasoning to generate hypoth-
eses and produce possible answers from the 
available information. In the healthcare set-
ting, each potential answer then receives a 
confidence rating based on the supporting 
clinical and scientific evidence. If we can 
improve diagnostic accuracy, it could poten-
tially be the most directly impactful step to 
improving our healthcare system.

Now that we are beginning to implement 
ways of integrating large and sometimes dis-
parate pieces of information, the next chal-
lenge involves the production of content 
(data) necessary to generate meaningful 
conclusions and inform treatment recom-
mendations. High throughput platforms, 
such as gene expression microarrays and 
next generation sequencing, produce thou-
sands to millions of pieces of information 
per patient. Tied to clinical information, this 
big data provides the base from which ques-
tions can be asked and, one day, answered. 

Several notable initiatives, including The 
Cancer Genome Atlas, the Cancer Moon-
shot, the 100,000 Genomes Project (United 
Kingdom) (37), the Sweden Cancerome 
Analysis Network - Breast (SCAN-B)[38], 
the NIH’s All of Us research program, and 
France Genomic Medicine 2025, seek to 
enable scientific discovery through the in-
tegration of genomics and medicine on a 
large-scale, population-based level to im-
prove collaboration, transparency and pa-
tient outcomes. France’s Genomic Medicine 
2025 aims to place France as a leader among 
major countries engaged in genomic medi-
cine within the next 10 years. The first two 
genomic platforms were selected in 2017; 10 
additional platforms are planned over the 
next five years. One will serve to meet the 
needs of patients suffering from cancer or 

rare diseases; the other is meant to begin se-
quencing genomes from the general popula-
tion. Equipment and resources are planned 
to sequence the equivalent of 18,000 ge-
nomes per year. The 100,000 Genomes 
Project, in partnership with the National 
Health Service England, launched in late 
2012, plans to sequence 100,000 genomes 
from NHS patients, targeting patients with 
rare diseases and those with cancer.  The 
program aims to benefit patients and enable 
new scientific discovery, while also driving 
the UK genomics industry (37). The SCAN-
B study was initiated in 2010 as a multicenter 
observational study to evaluate genomic 
profiles of breast cancer by whole transcrip-
tome RNA-sequencing; by 2017, they had 
enrolled >10,000 patients and generated 
RNAseq data on >7500 specimens (38). The 
Cancer Genome Atlas (TCGA), a collabora-
tion between the National Cancer Institute 
and the National Human Genome Research 
Institute to accelerate the understanding of 
the molecular basis of cancer through ge-
nome analysis technologies, collected data 
from 11,000 patients on 33 different tumor 
types during an 11 year period of study 
(https://cancergenome.nih.gov/abouttcga/
overview). President Obama announced 
the Cancer Moonshot Initiative in January 
2016, acknowledging the need to accelerate 
discovery and encouraging change. The five 
strategic goals of the initiative are to catalyze 
new scientific breakthroughs, unleash the 
power of data, accelerate bringing new pat-
ent therapies to patients, strengthen preven-
tion and diagnosis, and to improve patient 
access and care (https://www.cancersup-
portcommunity.org/sites/default/files/up-
loads/policy-and-advocacy/article/cancer_
moonshot_report_final.pdf). Notably, Vice 
President Joe Biden emphasized the need to 
engage patients as partners in research. The 
“All of us” research program was announced 
in 2016 by NIH to advance precision medi-
cine. It has a goal to enroll 1 million or more 
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volunteers from diverse backgrounds and 
lay the scientific foundation for a new era of 
personalized health care. Data will be col-
lected from participants by surveys, their 
electronic records, and some participants 
will provide urine and blood samples. Data 
will be analyzed to learn about the health 
disparities and different health conditions.

New Technologies Require Education

Patients are already exhibiting a growing 
desire to participate in their own health/dis-
ease management, as well as to connect with 
others afflicted by the same disease or condi-
tion. The internet and modern social media 
tools provide endless resources to patients 
and their families, changing the dynamic 
of the patient-physician relationships. More 
information can be a double-edged sword, 
since there is just as much misinformation 
as reliable, verifiable information. It is now 
the job of health professionals and care giv-
ers to not only disseminate information, but 
to also contextualize and curate information 
given to them by patients. All of these new 
technologies require education, and despite 
the unprecedented wealth of information 
provided in the current era of genomics in 
medicine, many physicians do not have the 
training/expertise to interpret results from 
the deluge of genetic/genomic tests per-
formed (39).  

Through clinical trials, physicians and 
patients can work together to advance medi-
cal science. The traditional view of clinical 
trials is that a study is designed to answer 
a single question, usually in reference to a 
new drug compared to the current standard 
of care. Of late, the failure of trial after trial 
to produce a positive result has magnified 
some major flaws of traditional trial design, 
namely that trials take too long to show effi-
cacy. Although counter-intuitive, it actually 
becomes even harder to show efficacy in dis-
ease states in which treatments are currently 

very effective. Adaptive trial designs are 
pushing the envelope by moving patients in 
and out of different treatment arms based on 
their response (40). Unlike the traditional 
model, patients who do not benefit from an 
experimental treatment are quickly offered 
alternatives. In savvy adaptive trials, clinical 
and genomic data from responders are used 
to then identify other patients with similar 
characteristics for future randomizations 
in order to optimize the chance of finding 
the right patient for the right therapeutic. 
The goal of the trial has now changed from 
examining how will a patient respond to 
an experimental therapeutic, to identifying 
who will most likely benefit from an experi-
mental therapeutic. By linking genomics 
and clinical data we can apply bioinformat-
ics approaches to developing individualized 
or targeted treatments, using novel genomic 
signature and biomarkers to identify pa-
tients who will respond, or just as impor-
tantly patients who will not respond.

Linking Genomics and Clinical Data: 
the FLEX Study

Advances in technology have enabled this 
paradigm shift in medicine, recognizing the 
importance of converging clinical factors and 
genomic pathway dependencies. Likewise, 
the ability to electronically capture clinical 
data efficiently has opened the door to novel 
trial designs that are accelerating the rate of 
insight discovery and hypothesis testing. For 
example, testing for the 70-gene MammaP-
rint (MP) signature has become standard of 
care in many early stage breast cancers, but 
largely unrealized is that MP is still tested on 
a microarray platform, similar to how it was 
developed. This has allowed for the untested 
genes that reside on the microarray platform, 
but are outside of the MP algorithm, to be 
tested against clinical outcomes at a cost-
effective rate, allowing the scale of research 
to not be limited by traditional trial funding. 
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Th is scalable model is the foundation of the 
FLEX Registry protocol. 

FLEX (MammaPrint, BluePrint and Full-
genome Data Linked with Clinical Data to 
Evaluate New Gene Expression Profi les: An 
Adaptable Registry) is a large-scale, popula-
tion based prospective registry, sponsored 
by Agendia, Inc.  Th e study is open to Stage 
I, II or III breast cancer patients and began 
enrolling patients in 2017. Th e FLEX study 
matches full-genome expression data (Fig-
ure 1) with comprehensive clinical data on 
patients enrolled in the study.  Full genome 
profi ling includes results from Agendia’s two 
genomic signature assays, MammaPrint and 

BluePrint. FLEX is patient-centered, agnos-
tic to breast cancer subtype, management 
plan and treatment regimen. Th e study aims 
to collect 10 years of follow-up data on par-
ticipating patients. By design, the study will 
not follow a defi ned endpoint, but uses a 
changing heuristic model driven by match-
ing genomic data with comprehensive clini-
cal data. 

Unlike traditional trials, oft en designed 
without the downstream input of those 
who will later try to analyze the data (41), 
in FLEX, all participating investigators have 
the ability to propose concepts for investi-
gation, which will shape the method and 

Figure 1. Representative pseudo-color image of microarray for full transcriptome.

Figure 2. Model of the FLEX registry research cycle in which new gene signatures, discovered through retro-
spective analysis, can be validated in a larger population and used to create personalized breast cancer profi les 
in the future.
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Figure 3. Heatmap of quantile normalized gene intensities for top 25% of most variable genes from full genome 
transcriptome, across 44 samples clustered by Pearson correlation.   Visual representation of the relative amount 
of expression of all genes across the array for all tumor samples included in the analysis (n=44).  Expression of 
all genes in all tumor samples is relative to all other genes in order to visualize expression patterns among all 
tumor samples.  Gene expression intensity is represented by colors, with blue indicating low expression and red 
indicating high expression. Each row includes the pattern of expression for all genes for a single tumor sample.  
Similar gene expression profiles are clustered more closely together, so that the most similar profiles are in clos-
est proximity.  Clinical characteristics (grade, tumor type, lymph node status, BluePrint subtype, MammaPrint 
result) associated with each tumor sample are indicated by the legend on the right and color-coded accord-
ingly on the left side of the heatmap. 

structure of the clinical and genomic data 
collection of the trial, which will evolve over 
time (Figure 2). The scale of FLEX is also 
not limited to a defined enrollment target, 
which will allow obscure and yet-undefined 
clinical and genomic subsets to be ade-
quately powered for study. This accelerated 
heuristic technique that FLEX employs has 
already produced compelling proof-of-con-
cept arguments. Preliminary data analysis 
was performed on a subset of enrolled pa-
tients (n=43) from a single location. A heat-
map of quintile normalized gene intensities 
for top 25% of most variable genes from full 
genome transcriptome, across 44 samples 
(one patient had two submissions) clustered 
by Pearson correlation is shown in Figure 3. 
Several clinical factors are included for com-
parison, demonstrating that the most differ-
entially expressed genes in the breast tumors 
from these patients do not cluster by tumor 

grade, histopathologic tumor type, or lymph 
node involvement (Figure. 3). This method 
of clustering analysis applied over the non-
limited scale and proliferative trial objec-
tives will reveal genomic signatures relevant 
to breast cancer management, as well as the 
landscape of clinical-genomic oncology 
practice. 

Summary/Conclusions

Technological developments in genomic 
medicine are advancing at a breathtaking 
rate. The potential for precision medicine 
to match patients to gene-targeted therapy 
is a very intriguing promise, but simultane-
ously creates many challenges. One of the 
main challenges to implementing genomic 
medicine into clinical practice is conquer-
ing the knowledge gap arising from the ex-
tensive breadth and depth of data available 
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through genomic testing. The complexity is 
then compounded by wide variations in the 
genomic landscape of tumors, both within 
and between cancer types. Most of our pres-
ently practicing oncologists were educated 
and trained in the era of empiric and “evi-
dence-based” oncology and few have com-
prehensive training in techniques of rapidly 
advancing genomic medicine. Even fewer 
have the knowledge and skills necessary to 
embark on “data mining” of large datasets 
provided by gene expression profiling or full 
exome sequencing to distil vast amounts of 
data into clinically useful measurements.

In contrast, practicing oncologists have 
the clinical experience and expertise in pa-
tient care necessary to fill gaps that modern 
genomic analysis and massive data produc-
tion create. Therefore, the future of oncol-
ogy will rely on interdisciplinary collabora-
tion between physicians, biologists, geneti-
cists, bioinformatics specialists, and patients 
and their families. All participants will have 
to acquire and retain new knowledge and 
skills in order to provide the best individu-
alized care to patients. To succeed, genomics 
must be included in the medical education 
of future physicians. This training process 
will undoubtedly be ongoing, facilitated and 
complicated by fast moving technological 
advances. The practice of medicine is chang-
ing along with advances that revise the sci-
ence of medicine. In a new era of genomics 
and informatics, “one size fits all” treatments 
may soon be replaced with therapies that are 
truly personalized to an individual’s unique 
combination of genes, environment, and 
lifestyle. Oncology is at the forefront of these 
advances; however, with all of the fervor 
these advances bring, there are challenges 
to be addressed in order to fully realize the 
potential that genomics and personalized 
medicine have in transforming patient care. 
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