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Microphthalmia-associated transcription factor (MITF) – 
from Waardenburg syndrome genetics to melanoma therapy

Ivan Šamija, Josip Lukač, Zvonko Kusić

Microphthalmia-associated transcription factor (MITF) was 
first discovered as protein coded by gene whose mutations 
are associated with Waardenburg syndrome. Later, MITF was 
shown to be key transcription factor regulating melanogen-
esis. Further studies have shown that in addition to regulat-
ing melanogenesis MITF also plays central role in regulation 
of melanocyte development and survival. MITF gene is am-
plified in a proportion of melanomas and ectopic MITF ex-
pression can transform melanocytes so MITF can function 
as melanoma “lineage survival” oncogene. Different studies 
have further revealed MITF’s important but complex role in 
tumorigenesis and progression of melanoma. As expected 
from its important role in melanocytes and melanoma MITF 
is intricately regulated on all the levels from transcription to 
post-translational modifications. Although complex mecha-
nisms of MITF functioning are still being revealed, MITF 
already has a valuable role in managing melanoma patients. 
Immunohistochemical analysis of MITF has shown both di-
agnostic and prognostic value in patients with melanoma. 
MITF is also a valuable specific marker for detection of circu-
lating melanoma cells by reverse-transcription – polymerase 
chain reaction. MITF has recently been investigated as a po-
tential target for melanoma therapy.

Key words: Microphthalmia-associated transcription fac-
tor, Melanoma, Melanocytes, Biological tumor markers, 
Waardenburg’s syndrome.

Introduction

Microphthalmia-associated transcription 
factor (MITF) was first discovered as a 
protein associated with Waardenburg syn-
drome. Further studies have revealed MITF 
as a master regulator of melanocyte func-
tion, development and survival. As expected 
from its role in normal melanocytes, MITF 

has also an important role in melanoma 
tumorigenesis and progression. The role of 
MITF in both normal melanocytes and mel-
anoma is complex and depends on intricate 
system of regulation on different levels, from 
MITF transcription to post-translational 
modifications. That system, all components 
of which are still being discovered, enables 
MITF to adjust behaviour of melanocytes 
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and melanoma cells to various signals com-
ing from within the cell and from the envi-
ronment of the cell. Although all the com-
ponents of MITF’s functioning are still un-
known, MITF already has a valuable role in 
managing patients with melanoma as diag-
nostic and prognostic marker. Also, several 
therapeutic approaches to melanoma target-
ing MITF are being explored. In addition 
to its role in melanocytes and melanoma, 
MITF also plays important role in several 
other cell types, like osteoclasts and mast 
cells, but the focus of this review will be on 
a complex role of MITF in melanocytes and 
melanoma, and on application of MITF in 
managing melanoma patients.

MITF and Waardenburg syndrome

MITF was discovered as a protein coded on 
a gene locus associated with Waardenburg 
syndrome in humans (1, 2). Waardenburg 
syndrome is a hereditary autosomal domi-
nant disorder characterized by heterochro-
mia iridis, patchy abnormal pigmentation of 
the hair and skin and sensorineural deafness 
(3). Clinically Waardenburg syndrome is 
classified in four types. Waardenburg syn-
drome type 1 and Waardenburg syndrome 
type 3 have been associated with mutations 
in PAX3 gene (4). Waardenburg syndrome 
type 4 also known as Waardenburg-Shah 
syndrome has been associated with muta-
tions in three genes, SOX10, gene for endo-
thelin 3, and gene for endothelin receptor B 
(EDNRB) (5). 

Waardenburg syndrome type 2 has been 
associated with mutations in one allele of 
MITF gene (6, 7). It has been shown that 
mutations in one allele of MITF gene do not 
influence the activity of protein coded on 
the other (non-mutated) copy of MITF gene 
(7). Therefore the dominant inheritance of 
Waardenburd syndrome type 2 has been 
explained as a result of haploinsufficiency, 
mechanism by which a MITF protein cod-

ed on a non-mutated allele of MITF gene 
can’t reach the intracellular concentration 
necessary for its normal function (7). The 
symptoms of Waardenburg syndrome type 
2 (white patches of the skin, altered iris pig-
mentation and loss of hearing associated 
with absence of melanocytes in stria vas-
cularis of the cochlea) can be explained as 
a consequence of the melanocyte depletion 
(3). Mutations in MITF gene have also been 
associated with Tietz syndrome, which is a 
rare hereditary auditory-pigmentary dis-
order (8). The symptoms characteristic for 
Tietz syndrome are similar to the ones as-
sociated with Waardenburg syndrome type 
2 but are present in a more severe form (8). 

Mice with mutations in microphthalmia 
(mi) locus which is responsible for the syn-
thesis of Mitf, a mouse homologue of MITF, 
have following disorders: loss of pigmenta-
tion, reduced eye size (microphthalmia), re-
duced number of mast cells, osteoporosis as a 
consequence of disturbed osteoclast function, 
and hearing impairment (9). These disorders 
implicate a role of Mitf in the development 
and function of melanocytes, mast cells, reti-
nal pigment epithelial cells and osteoclasts.

MITF isoforms

Gene MITF is located on a third human 
chromosome in a region 3p12.3-3p14.1 and 
is responsible for the synthesis of nine so 
far described isoforms: MITF-M, MITF-A, 
MITF-H, MITF-B, MITF-C, MITF-D, MITF-
Mc, MITF-E and MITF-J (2, 10-16) (Figure 
1.). Protein MITF contains a basic domain 
required for DNA binding and helix-loop-
helix and leucine zipper domains required for 
dimer formation (bHLH-LZ structure) (1-2). 
MITF is similar in amino acid sequence to 
other transcription factors that share the same 
bHLH-LZ structure: TFE3, TFEB and TFEC 
(17-19). MITF can bind DNA as a homodi-
mer or as a heterodimer with transcription 
factors TFE3, TFEB and TFEC (17). 
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All the isoforms of MITF protein have 
a common C-terminal region containing a 
domain required for transcription activa-
tion and bHLH-LZ structure but each iso-
form has a distinct N-terminal region (20, 
21) (Figure 1). The shortest isoform MITF-
M consists of 419 amino acids and contains 
a unique N-terminal domain M (amino acid 
sequence: MLEMLEYNHY) and a six amino 
acids insert (ACIFPT) close to the basic re-
gion of the protein (18). It has been shown 
that also the MITF-M protein without this 
six amino acids insert is synthesized (18). 
Bismuth et al have shown that MITF-M iso-
form containing six amino acids insert can 
inhibit cell proliferation unlike the isoform 
without six amino acids insert (22). In accor-
dance to this finding substantially increased 
proportion of isoform without six amino ac-
ids insert was found in metastatic melanoma 

in comparison to normal melanocytes (23). 
MITF-M is specifically expressed in mela-
nocytes originating from neural crest and in 
melanoma cells (10, 11, 24, 25). The malano-
cyte-restricted promoter region from which 
MITF-M isoform is transcribed is respon-
sible for such a specific expression of this 
isoform (26). A splice variant of MITF-M 
named MITF-Mdel containing two in frame 
deletions, 56 amino acids deletion in exon 
2 (from V32 to E87) and 6 amino acids de-
letion in exon 6 (from A187 to T192), has 
been identified (27). Like MITF-M, MITF-
Mdel is also specifically expressed in mela-
nocytes and melanoma cells (27).

Isoforms MITF-A, MITF-H, MITF-B, 
MITF-C, MITF-Mc and MITF-J have a com-
mon B1b domain of 83 amino acid residues 
and each its unique N-terminal domain (A, H, 
B1a, C, Mc and J) (13-16, 18, 20) (Figure 1). 

Figure	 1	 Structures	 of	 MITF	 isoforms .	 Schematic	 representations	 of	 all	 described	 isoforms	 of	 MITF	 protein	
(MITF-M,	MITF-A,	MITF-H,	MITF-B,	MITF-C,	MITF-D;	MITF-Mc,	MITF-E	and	MITF-J)	are	shown .	An	activation	region	
(AR),	 basic	 helix-loop-helix	 leucine-zipper	 region	 (bHLH-LZ),	 serine-rich	 region	 (S)	 and	 N-terminal	 regions	
encoded	by	isoform-specific	exons	(A,	B1a,	B1b,	C,	H,	Mc	and	M)	are	indicated	for	each	isoform .	Corresponding	
exons	of	MITF	gene	(1A,	1B1a,	1B1b,	1C,	1D,	1E,	1H,	1J,	1Mc,	1M,	2,	3,	4,	5,	6,	7,	8	and	9)	are	indicated	under	the	
schematic	representation	of	each	isoform .

Ivan	Šamija		et	al .:	Microphthalmia-associated	transcription	factor
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Domain A consists of 35 amino acid resi-
dues, domain H of 19, domain B1a of 10, 
and domain C of 34 amino acid residues (12, 
20). Unlike the other isoforms, the transla-
tion of MITF-E and MITF-D, and probably 
also MITF-J isoform, does not start from the 
first exon, because it does not contain a code 
for methionine, but it starts from within 
B1b region (Figure 1.). Therefore the protein 
products for these three isoforms (MITF-E, 
MITF-D and MITF-J) are the same (13, 14, 
16) (Figure 1).

Isoforms MITF-A and MITF-H are ex-
pressed in different cell types, including me-
lanocytes and melanoma cells, with varying 
levels of expression depending on a cell type 
(10, 11, 24). Isoform MITF-C is expressed in 
different cell types, but not in melanocytes 
and melanoma cells (11). Of all the isoforms 
isoform MITF-A is the most abundantly 
expressed in retinal pigment epithelial cells 
(10). The expression of MITF-D isoform 
has been found in retinal pigment epithe-
lial cells, macrophages, osteoclasts and mast 
cells, which are all cells affected by muta-
tions in mouse MITF gene (13). In other cell 
types analyzed, including melanocytes and 
melanoma cells, no expression of MITF-
D isoform has been found (13). Isoforms 
MITF-E and MITF-Mc are specifically ex-
pressed in mast cells (14, 15).

MITF gene

Gene MITF consists of nine first exons (1M, 
1A, 1H, 1B, 1C, 1D, 1E, 1Mc and 1J) encod-
ing the synthesis of N-terminal domain spe-
cific for each isoform and eight exons shared 
by all isoforms (12, 16) (Figure 1). 3’ part of 
exon B (B1b) is also a second exon in iso-
forms MITF-A, MITF-H, MITF-C, MITF-
D, MITF-E, MITF-Mc and MITF-J (12, 16) 
(Figure 1). So the isoforms MITF-M and 
MITF-B are encoded by nine exons, while 
the isoforms MITF-A, MITF-H, MITF-C, 
MITF-D, MITF-E, MITF-Mc and MITF-J 

are encoded by ten exons. Each isoform is 
transcribed from its own unique promoter, 
suggesting the functional diversity of these 
isoforms in different tissues (12). The amino 
acid sequences of homologues of human 
MITF protein have been determined in mice 
(1), rats (28), chicken (29), hamsters (30), 
quails (31) and zebrafish (Danio rerio) (32). 
All of these sequences are highly homolo-
gous with the one of human MITF protein. 
Analysis of publicly available genomic se-
quence data indicates the existence of genes 
homologous to human MITF gene also in 
other vertebrate as well as invertebrate spe-
cies (33).

Function of MITF

MITF is a transcription factor that activates 
the transcription of genes for tyrosinase, 
tyrosinase-related protein 1 (TYRP1), and 
dopachrome tautomerase (DCT), enzymes 
specifically expressed in melanocytes that 
have a key role in synthesis of pigment mel-
anin (34-36). MITF activates the transcrip-
tion of these and other target genes by bind-
ing in their promoter regions to a restricted 
subset of E-box motives containing canoni-
cal CATGTG sequence flanked by a 5’ thy-
midine (37). More recent analysis of more 
than 40 MITF target genes came out with 
T-C-A-T/C-G-T-G-A as a MITF-binding 
consensus sequence (38). The regulation of 
DCT promoter is more complex than for ty-
rosinase and TYRP1, as some other proteins 
like CREB and SOX10 cooperate with MITF 
in activating DCT expression, while PAX3 
has an antagonistic effect on activation of 
DCT expression by MITF (39-41). In addi-
tion to activating the transcription of genes 
involved in melanin synthesis, MITF also 
activates the transcription of genes involved 
in melanosome structure (PMEL17/SILV/
GP100, MLANA/MELAN-A/MART-1), me-
lanosome biogenesis (ocular albinism type 
1 gene (OA1)), and melanosome transport 
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(RAB27A), which makes MITF a central 
regulator of melanogenesis on a transcrip-
tion level (38, 42-45). MITF also activates 
the transcription of gene for melanocortin 
1 receptor (MC1R), a receptor on plasma 
membrane of melanocytes for a-melanocyte 
stimulating hormone (a-MSH) (38, 45, 46). 
Binding of a-MSH to MC1R is first step in 
the mechanism of the hormonal regulation 
of pigmentation, the mechanism that also 
involves activation of MITF as an important 
downstream step (45). Therefore, activation 
of MC1R transcription by MITF represents 
a positive feedback mechanism in the hor-
monal regulation of pigmentation.

Association of mutations in human 
MITF gene with Waardenburg syndrome 
and study of mice with mutations in mi-
crophthalmia locus coding for mouse ho-
mologue of MITF imply important role for 
MITF in melanocyte development and sur-
vival. Several experiments have confirmed 
that MITF-M has an important role in dif-
ferentiation and normal function of me-
lanocytes. Induced expression of gene for 
MITF-M in NIH/3T3 fibroblasts in which 
it is normally not expressed converted these 
cells into cells expressing melanocyte-spe-
cific genes for tyrosinase and TRP-1 (47). 
In one experiment zebrafish (Danio rerio) 
embryos lacking melanophores due to mu-
tations in nacre, a functional homologue of 
MITF gene, were transfected with wild-type 
nacre gene, which was sufficient to restore 
the development of melanophores (32). In 
another experiment embryonic stem-like 
cells form medaka (Orysias latipes) were 
transfected with the melanocyte-specific 
isoform of Xiphophorus mitf gene and cells 
with all the characteristics of differentiated, 
functional pigment cells were observed (48). 
Unlike for melanocytes, differentiation of 
retinal pigment epithelium cells and mela-
nogenesis in these cells is not regulated by 
melanocyte specific MITF-M isoform but by 

other MITF isoforms like MITF-D, MITF-H 
and MITF-A (10, 49). 

Several targets of MITF, including genes 
that play important role in the control of 
apoptosis and cell cycle, have been identi-
fied elucidating the important role of MITF 
in melanocyte development and survival. 
MITF controls the transcription of BCL2, 
gene for Bcl-2, an important inhibitor of 
apoptosis (50). The importance of this inter-
action for melanocyte survival was shown 
in experiment in which overexpression of 
BCL2 rescued melanocytes from apoptosis 
induced by dominant-negative MITF mu-
tation (50). Regulation of BCL2 expression 
by MITF could explain reduced number of 
melanocytes in persons with Waardenburg 
syndrome type 2. Mutated MITF in persons 
with Waardenburg syndrome type 2 is less 
efficient in inducing the expression of BCL2, 
and reduced expression of BCL2 has a con-
sequence of more melanocytes dying by 
apoptosis. MITF induces the transcription 
of another inhibitor of apoptosis, BIRC7 
(also known as melanoma inhibitor of apop-
tosis (ML-IAP) or LIVIN) (51). MITF also 
regulates the expression of MET, receptor 
for hepatocyte growth factor (HGF), the ac-
tivation of which protects melanocytes from 
apoptosis (52-53). MITF promotes prolifer-
ation of melanocytes by regulating the tran-
scription of several genes involved in the 
cell-cycle regulation. In melanocytes and 
melanoma cells MITF binds to a sequence 
upstream of the transcription start of cy-
clin-dependent kinase 2 (CDK2) gene and 
induces transcription of this important cell-
cycle regulator that induces cell-cycle pro-
gression (54). MITF induces the expression 
of the gene for transcription factor TBX2 
that prevents senescence and cell-cycle ar-
rest through repression of cyclin-dependent 
kinase inhibitor 1A (p21) expression (55-
57). Another mechanism by which MITF 
promotes proliferation of melanocytes and 
melanoma cells is through activation of the 

Ivan	Šamija		et	al .:	Microphthalmia-associated	transcription	factor
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expression of DIAPH1, a gene for Dia1 pro-
tein that controls actin polymerization (58). 
Activity of Dia1 results in increased degra-
dation of cyclin-dependent kinase inhibitor 
1B (p27), which leads to an increased cellular 
proliferation (58). MITF trough activation of 
DIAPH1 expression also reduces invasive-
ness of melanoma cells (58). In contrast to 
described pro-proliferative effects, MITF 
also has anti-proliferative effects. MITF ac-
tivates transcription of genes for two proteins 
that induce cell cycle arrest, cyclin-dependent 
kinase inhibitor 1A (CDKN1A/p21) and cy-
clin-dependent kinase inhibitor 2A (CDKN2A/
p16) (59, 60). The effect of MITF on cell cycle 
arrest indicates the important role of MITF 
in melanocyte differentiation. It is possible 
that level of expression of MITF determines 
whether it will have pro-proliferative or 
anti-proliferative effect. It was shown that 
both MITF depletion and MITF forced ex-
pression inhibit proliferation of melanoma 
cells while normal level of MITF expression 
favours cell proliferation (61). Some other 
genes that play a role in promoting mela-
nocyte survival and preventing apoptosis 
have been identified as MITF targets, like 
gene for a DNA repair enzyme apurinic ⁄ 
apyrimidinic endonuclease1 (APEX1), gene 
for a transcription factor hypoxia inducible 
factor 1 a (HIF1A), and gene for endothelin 
receptor B (ENDRB) (38, 62-64). Also some 
other MITF target genes that are not directly 
related to melanocyte survival and develop-
ment have been identified, like TRPMN1/
melastatin, glycoprotein-nmb (GNMB), and 
SNAI2/SLUG, a gene that plays important 
role in epithelial-mesenchymal transition 
(38, 65-67).

In addition to its’ central role in mela-
nocyte development and biology, MITF is 
also important for osteoclasts and mast cells 
development and function (68). In osteo-
clasts MITF has been shown to activate the 
transcription of several genes for proteins 
important for osteoclast function like tartar-

ate-resistant alkaline phosphatase (TRAP), 
cathepsin K, OSCAR, E-cadherin, OSTM1 
and Clcn7 (69, 70). In mast cells MITF acti-
vates the expression of several genes impor-
tant for mast cell differentiation and func-
tion like genes for mast cell proteases 2, 4, 5, 
6, and 9, granzyme B, tryptophan hydroxy-
lase, Kit, and some others (71, 72).

Regulation of MITF

MITF is regulated on different levels, form 
transcription to post-translational modifica-
tions. It was shown that Wnt signalling path-
way induces the transcription of MITF (73). 
Wnt are secreted cysteine rich glycoproteins 
that play an important role in embryonic de-
velopment and differentiation. Wnt proteins 
are especially important for differentiation 
of melanocytes and other neural crest de-
rived cells (74, 75). Binding of Wnt mole-
cules to specific cell-surface receptors of the 
Frizzled family activates these receptors and 
initiates the sequence of signals that leads to 
increased stability and accumulation of cy-
toplasmic β-catenin which then enters the 
nucleus and interacts there with lymphoid 
enhancer factor 1/ T cell factor (LEF1/TCF) 
transcription factor inducing the transcrip-
tion of LEF1/TCF target genes (75) (Fig-
ure 2.). In a promoter region of MITF-M a 
functional binding site for LEF1/LCF was 
discovered which explains the mechanism 
of activation of MITF expression by Wnt 
signaling pathway (73). MITF also interacts 
directly with LEF1 to activate expression of 
some MITF target genes, as well as expres-
sion of MITF itself (76, 77). It was shown 
that dickkopf 1 (DKK1), an inhibitor of Wnt 
pathway, has a suppressing effect on the ex-
pression of MITF (78).

MITF expression can also be activated 
by a melanocyte-stimulating hormone 
(aMSH) signalling pathway (36, 79). aMSH 
is synthesized and secreted in epidermal 
keratinocytes and binds to the melanocor-
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tin 1 receptor (MC1R) on cell surface of 
melanocytes activating a signalling cascade 
that involves activation of adenylate cyclase 
that synthesizes cyclic adenosine mono-
phosphate (cAMP). One of the effects of 
increased level of intracellular cAMP is ac-
tivation of cAMP response element-binding 
(CREB) transcription factor by phosphory-
lation. Activated CREB can bind to a target 
sequence in the promoter region of MITF-
M and activate its transcription (36, 79). 

In addition to LEF1/TCF and CREB, 
SOX10 and PAX3 transcription factors also 
bind to promoter region of MITF-M and 
activate its expression (80-84). Mutations 
in PAX3 gene are associated with Waarden-
burg syndrome type 1 and 3 while mutations 
in SOX10 gene are associated with Waarden-
burg syndrome type 4 (85, 86). Role of PAX3 

and SOX10 in regulation of MITF expres-
sion can explain some of the symptoms as-
sociated with Waardenburg syndrome type 
1, 3, and 4. It was shown that cooperation 
between SOX10 and CREB is required to ac-
tivate MITF expression, which can explain 
how ubiquitous CREB can regulate cell-type 
specific expression of MITF (87). Waarden-
burg syndrome type 4 can also be caused 
by mutations in gene for endothelin (EDN) 
or gene for its receptor EDNRB. Binding of 
EDN to EDNRB on melanocytes starts a sig-
nal cascade that leads to increased expression 
of MITF and phosphorylation of MITF at Ser 
73 (64). MITF transcription can be activated 
also by transcription factors Onecut-2 and 
peroxisome proliferator-activated receptor g 
(PPARg) (88, 89). Recently it was shown that 
interleukin-1 can significantly down-regu-

Figure	2	Schematic	representation	of	regulation	of	MITF	gene	expression	and	MITF	protein	activity .	MAPK	
(mitogen	activated	protein	kinases),	p90Rsk,	and	GSK3b	are	protein	kinases	that	phosphorylate	MITF	protein	
on	Ser	73,	Ser	409,	and	Ser	298,	respectively	and	thus	regulate	its	activity .	CREB	(cAMP	response	element	
binding	protein),	PAX10,	SOX10	i	LEF1	are	transcription	factors	that	induce	transcription	of	MITF	gene .	Wnt,	
SCF	(stem	cell	factor),	and	aMSH	(a	melanocyte	stimulating	hormone)	are	growth	factors	that	activate	cellular	
signaling	pathways	leading	to	activation	of	named	protein	kinases	and	transcription	factors .	c-Kit	is	receptor	
for	SCF	(stem	cell	factor),	Frizzled	is	receptor	for	Wnt,	and	MC1r	is	receptor	for	aMSH .	

Ivan	Šamija		et	al .:	Microphthalmia-associated	transcription	factor
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late the expression of MITF-M in melanoma 
cells expressing interleukin 1 receptor (90).

It was shown that oncogenic BRAF with 
V600E mutation found in ~60 % melanomas 
also regulates MITF by two different mecha-
nisms (91-93). First mechanism involves 
BRAFV600E activation of extracellular-signal 
regulated kinase 2 (ERK2) that then phos-
phorylates MITF thus inducing its degra-
dation (92). The other mechanism involves 
BRAFV600E mediated induction of the expres-
sion of transcription factor BRN2 that is not 
normally expressed in melanocytes and that 
can bind to MITF promoter and induce the 
transcription of MITF (93). These appar-
ently contradictory effects of BRAFV600E on 
MITF can be reconciled in a previously de-
scribed model according to which normal 
level of MITF activity promotes cell prolif-
eration while both its downregulation and 
upregulation suppress this pro-proliferative 
action of MITF.

MITF is also regulated by post-transla-
tional modifications. Binding of stem cell 
factor (SCF) to its cell surface receptor c-Kit 
starts a signalling cascade that leads to phos-
phorylation of MITF on Ser 73 by a mitogen 
activated protein kinase (MAPK) extracel-
lular-signal regulated kinase 2 (ERK2) and 
on Ser 409 by serine-threonine kinase p90 
ribosomal s6 kinase (RSK) (94, 95). It was 
shown that Ser 73 phosphorylation of MITF 
enables binding of transcription coactivator 
p300/CREB-binding protein (CBP) to MITF 
increasing the activity of MITF as transcrip-
tion factor (96). Both Ser 73 and Ser 409 
phosphorylations also downregulate MITF 
by enhancing its ubiquitination followed by 
proteosome degradation (95). MITF can also 
be phosphorylated at Ser 298 by glycogen 
synthase kinase 3b (GSK3b) which activates 
MITF by enhancing its binding to its target 
DNA sequences (97). The importance of this 
phosphorylation is confirmed by finding of 
point mutation in a subset of Waardenburg 
syndrome 2 patients that results in substitu-

tion of Ser 298 with a proline in MITF (97). It 
was shown in osteoclasts that MITF is phos-
phorylated on Ser 307 by p38 MAPK as a part 
of NF-kB signalling pathway, which increases 
MITF activity in inducing the transcription 
of its target genes (98). The activity of MITF 
can also be modulated by sumoylation at Lys 
182 and Lys 316 mediated by protein inhibi-
tor of activated STAT3 (PIAS3) (99). It was 
shown that sumoylated MITF has decreased 
transcriptional activity on target genes with 
more than one MITF binding site (99). It was 
shown that in melanocytes and in melanoma 
cells MITF can be cleaved by caspases after 
Asp 345 producing C-terminal fragment 
that has pro-apoptotic activity (100).

The expression of MITF can also be 
regulated by microRNAs (miRNA). It was 
shown that expression of miRNA-137 sup-
presses MITF expression (101, 102). Also 
miRNA-182, that is frequently upregulated 
in melanoma, suppresses the expression of 
MITF (103). MITF expression is also regu-
lated by miRNA-148 (102). 

It was shown that activity of MITF as 
transcription factor depends on its interac-
tion with several other proteins. MITF binds 
a known transcriptional co-activators p300/
CBP, which enhances MITF’s activity as a 
transcription factor (96, 104). It was shown 
that interaction with p300/CBP turns MITF 
from repressor to activator of DCT gene (105). 
MITF was shown to interact with Rb to acti-
vate CDKN1A gene expression (59). Direct 
interaction of MITF with b-catenin increases 
activation of expression of MITF target genes 
(106). It was shown that activity of chromatin-
remodelling enzymes SWI/SNF is required 
for MITF activation of some MITF target 
genes (TRP1 and tyrosinase gene) but not for 
other MITF target genes (MC1R) (107).

MITF and melanoma

Cronin et al analyzed somatic mutations 
in MITF and SOX10, upstream regulator 
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of MITF, and found them in more than 14 
% primary melanomas and 22 % metastat-
ic melanoma (108). Garraway et al. have 
shown that MITF gene was amplified in 
10.5% of primary melanomas and 15.2% of 
metastatic melanomas, but no amplification 
was detected in melanocytic nevi, which are 
considered a pre-malignant lesions associ-
ated with melanoma (109). Also, the ampli-
fication of MITF gene was associated with 
decreased 5-year survival in the same study 
(109). In another study strong MITF gene 
amplification in metastatic melanoma pa-
tients was also associated with reduced dis-
ease-specific survival (110). Furthermore, 
it was shown that ectopic expression of 
MITF together with V600E mutated BRAF 
can transform immortalized melanocytes 
genetically engineered to have inactivated 
CDKN2A/CDK4/RB and p53 pathways 
and to express human telomerase reverse 
transcriptase (hTERT) (109). Also it was 
shown that MITF is at least partly respon-
sible for melanoma chemoresistance (109). 
Based on these results it was proposed that 
MITF might play a role as “lineage specific” 
oncogene in melanoma. “Lineage specific” 
(also called “lineage survival” and “lineage 
addiction”) oncogenes are genes that play 
important role in normal proliferation and 
survival of particular cell lineage during de-
velopment and deregulated expression of 
which in a subset of cancers of the same cell 
lineage is important for cancer survival and 
progression (111). It is possible that MITF 
amplification is one way to compensate for 
MITF downregulation trough BRAFV600E-
ERK, supporting a role for MITF as “lineage 
specific” oncogene in melanoma. The role of 
MITF as a “lineage specific” melanoma on-
cogene is in apparent contradiction with its 
role in melanocyte differentiation and cell 
cycle arrest exhibited trough activation of 
CDKN2A and CDKN1A gene transcription 
(59, 60). These contradicting roles of MITF 
could be reconciled if we hypothesize that 

MITF plays a role as “lineage specific” mela-
noma oncogene only in subset of melanoma 
cells in which CDKN2A/CDK4/RB pathway 
is inactivated, for example by mutations in 
CDKN2A gene which are well document-
ed in melanoma (112). This explanation is 
supported by finding that all cell lines with 
MITF gene amplification in previously de-
scribed study by Garraway et al also had 
CDKN2A pathway inactivation (109). In 
the same study MITF (in cooperation with 
BRAFV600E) could transform melanocytes 
that had inactivated CDKN2A pathway 
(109). Also, it was shown that inactivation 
of CDKN2A can enable melanocytes to es-
cape MITF induced growth inhibition while 
maintaining MITF expression (60). Studies 
that have shown that MITF is important 
activator of expression of several genes that 
play important role in melanoma cell sur-
vival, growth and proliferation, like BCL2, 
CDK2, HIF1A, TBX2, BIRC7/ML-IAP sup-
port the role of MITF as “lineage specific” 
oncogene in melanoma (50, 51, 54, 55, 57, 
63).

In a different genetic context when  
CDKN2A/CDK4/RB pathway is not inacti-
vated it is most probable that MITF activ-
ity should be kept at a certain level to pro-
mote melanoma cell survival and prolifera-
tion because too high expression of MITF 
would lead to cell cycle arrest and too low 
or no expression would lead to apoptosis. In 
line with this model is two-fold regulation 
of MITF by V600E mutated BRAF in mela-
noma. As previously described, BRAFV600E 
found in ~60 % melanomas, downregulates 
MITF trough ERK2 mediated phosphory-
lation and upregulates MITF transcription 
trough BRN2 transcription factor (92, 93). 
It is probable that in that way oncogenic 
BRAFV600E keeps MITF at a level needed to 
maintain melanoma cells proliferation and 
survival. Several studies have shown results 
corroborating that model. It was shown that 
upregulation of MITF expression in mela-
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noma cells inhibits their proliferation (92). 
Also, MITF reexpression in melanoma cells 
that do not express MITF reduced their 
tumorigenecity in vivo (25). Transfection 
of aggressive UISO-Mel-6 melanoma cells 
with MITF-M decreased their proliferation 
and metastatic potential leading to a less 
aggressive phenotype (113). Expression of 
MITF was studied by immunohistochemis-
try and was shown to decrease with mela-
noma progression (114). Another study 
has shown that MITF expression analyzed 
immunohistochemicaly is associated with 
longer overall survival and disease-free 
survival and fewer lymph node metastases 
(115). On the other hand, abolished MITF 
expression in melanoma cells resulted in 
profound apoptosis that could be rescued 
by BCL2 or BIRC7/ML-IAP overexpression 
(50, 51). In other study downregulation of 
MITF suppressed colony formation by mel-
anoma cells that could be rescued by over-
expression of CDK2, a cell cycle regulator 
which was shown to be controlled by MITF 
and indispensable for growth and cell cycle 
progression only in melanoma cells (54). 
Kido et al have shown that both depletion 
and forced expression of MITF significantly 
inhibited melanoma cell proliferation (61). 
Although many of the previously mentioned 
studies indicate important role for MITF in 
melanoma, MITF was not expressed in a 
proportion of melanoma samples analyzed, 
indicating that there are different subsets of 
melanomas which differ regarding the role 
and importance of MITF for their progres-
sion and survival (115-117). Furthermore, 
it is possible that importance and role for 
MITF in melanoma can change during mel-
anoma progression (118).

Several studies have shown that MITF 
is involved in other aspects of melanoma 
behaviour in addition to regulating mela-
noma cell survival and proliferation. MITF 
can regulate melanoma angiogenesis by 
activating the expression of HIF1A, which 

in turn activates the expression of vascu-
lar endothelial growth factor (VEGF) (63). 
Through regulating the expression of DI-
APH1, gene for Dia1 protein, MITF in addi-
tion to increasing proliferation also reduces 
invasiveness of melanoma cells (58). MITF 
induced by HGF signalling upregulates the 
expression of MET receptor and so plays a 
central role in HGF-MET regulated inva-
sion of melanocytes and melanoma cells 
(52). MITF also activates the expression of 
TRPM1/melastatin, a prognostic factor in 
melanoma patients the expression of which 
is inversely correlated with melanoma meta-
static potential and prognosis so it may play 
a role as melanoma metastasis suppressor 
(65). MITF can also be implicated in regula-
tion of melanoma invasion and metastases 
trough regulating the expression of SNAI2/
SLUG, a gene that plays important role in 
epithelial-mesenchymal transition (67). 
Hoek et al analyzed expression profiles for 
86 melanomas and separated them based on 
expression profile in two cohorts, one with 
high proliferative and low metastatic poten-
tial characterized by high MITF expression 
and other with low proliferative and high 
metastatic potential characterized by low 
MITF expression (119). In a further study it 
was shown that during tumour progression 
melanoma cells could switch from one to 
other of these two expression profiles (118). 
MITF was shown also to play important 
role in regulating cellular response to reac-
tive oxygen species through regulating the 
expression of apurinic/apyrimidinic endo-
nuclease 1(APE-1/Ref-1) (62). The expres-
sion of MITF makes melanoma cells more 
resistant to H2O2-induced cell death impli-
cating another role for MITF in melanoma 
carcinogenesis (62). 

Studies showing that signalling pathways 
deregulation of which is implicated in mela-
noma tumorigenesis and progression regu-
late MITF expression and activity further 
imply an important role for MITF in mela-
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noma. MITF is an important downstream 
target of Wnt/b-catenin signalling pathway 
that is deregulated with aberrant nuclear ac-
cumulation of b-catenin in significant pro-
portion of melanomas (73, 120). Widlund et 
al. have shown that b-catenin is important 
for growth and survival of melanoma in a 
manner dependent on downstream activa-
tion of MITF (121). As previously elabo-
rated, MITF is downstream target of c-Kit 
signalling pathway (95). Somatic oncogenic 
mutations in KIT, gene coding for c-Kit, 
have been implicated in melanomas aris-
ing on acral, mucosal and chronically sun-
damaged cutaneous surfaces and therapy 
targeting c-Kit has shown promising results 
in these melanoma patients(122, 123). Also, 
MITF expression is induced by TYRO3, 
which is overexpressed in melanoma and 
plays important role in melanoma tumori-
genesis and progression (124). Furthermore, 
miRNA-182, which is upregulated in melano-
ma and plays a role in melanoma progression 
regulates MITF transcription further empha-
sizing role of MITF in melanoma (103). 

In addition to melanoma, MITF has also 
been implicated in the development of clear 
cell sarcoma and TFE3 and TFEB, transcrip-
tion factors closely related to MITF, have 
been implicated in the development of some 
other cancers (125).

MITF as immunohistochemical 
marker for melanoma

The most common routinely used mark-
ers for immunohistochemical diagnosis of 
melanoma, S100 and gp100 (detected with 
HMB45 antibody) show either relatively low 
specificity (S100) or relatively low sensitiv-
ity (gp100/HMB45) (126). Therefore, a par-
ticular interest was shown for the results of 
the study in which all the tissue samples of 
primary melanoma and melanoma metas-
tases, including the ones that were negative 
for S100 and gp100, stained positively with a 

nuclear staining pattern when D5 antibody 
specific for human MITF was used (127). In 
that study samples of healthy skin and be-
nign melanocyte lesions were also positive 
for MITF. However, none of the samples of 
tumours of non-melanocyte origin was pos-
itive for MITF. 

Such highly specific and sensitive im-
munohistochemical staining for MITF in 
melanocyte lesions was confirmed in other 
studies (128, 129). In one study MITF was 
analyzed as immunocytochemical marker 
for melanoma, showing specificity of 97% 
and sensitivity of 100% superior to S100 
and gp100 in the same study (130). How-
ever, some other studies have shown a lower 
sensitivity (88% and 81%) of MITF protein 
as a marker for immunohistochemical diag-
nosis of melanoma (116, 117). In one study 
only 64% of S100 positive, HMB45 negative, 
epitheloid melanomas stained with MITF 
(131). Also staining for MITF not specific for 
melanocyte lesions has been shown in some 
studies. In one study 1 out of 8 breast carci-
nomas, 2 out of 17 renal carcinomas, and 2 
out of 5 leiomyosarcomas were MITF posi-
tive (117). In other study immunoreactiv-
ity for MITF was seen also in macrophages, 
lymphocytes, fibroblasts, Schwann cells, and 
smooth muscle cells at various sites, and in 
tumours derived from these cells (132). 

MITF was specially investigated as a 
marker for immunohistochemical diag-
nostics of desmoplastic melanoma, a rare 
histological type of melanoma that is often 
difficult to distinguish from some other tu-
mours or benign lesions, but did not show 
value for that purpose. In one study only 
one out of 30 investigated histological sam-
ples of desmoplastic melanoma was positive 
for MITF (116). Another study has shown 
that MITF is neither specific nor sensitive 
marker for immunohistochemical diagnos-
tics of desmoplastic and spindle-cell mela-
nomas (133). MITF has also shown a value 
as immunohistochemical marker for the 
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detection of melanoma metastases in sen-
tinel lymph nodes (134). Using the specific 
antibodies the expression of MITF protein 
was confirmed in cell lines and tissue speci-
mens of other tumours of melanocytic ori-
gin: uveal melanomas, central nervous sys-
tem melanocytomas and clear cell sarcomas 
(134-136). 

In one study the expression of MITF 
protein was investigated as a prognostic 
factor in patients with intermediate-thick-
ness (1-4 mm) cutaneous melanoma (115). 
The expression of MITF evaluated semi-
quantitatively by immunohistochemistry 
in that study was associated with statisti-
cally significantly longer overall survival 
and disease-free survival. In another study 
MITF gene amplification was analyzed by 
quantitative real-time PCR in tumour tis-
sue samples from metastatic melanoma pa-
tients (110). In that study strong MITF gene 
amplification was associated with a reduced 
disease-specific survival but no correlation 
was found between MITF copy number and 
chemotherapy response. These results indi-
cate that MITF gene copy number could be 
a valuable prognostic marker but not a pre-
dictive marker for chemotherapy response 
in patients with metastatic melanoma. 

MITF as a marker for the detection of 
circulating melanoma cells

The detection of circulating melanoma cells 
by reverse-transcription – polymerase chain 
reaction (RT-PCR) has been investigated as 
a potential prognostic and predictive mark-
er in melanoma patients. The most widely 
used melanoma-specific marker for RT-
PCR detection of circulating melanoma cells 
is tyrosinase. Tyrosinase has shown high 
specificity, low threshold for the detection of 
circulating melanoma cells and association 
with overall and progression-free survival in 
many studies (137). Still, the clinical value 
of tyrosinase is limited due to significant 

proportion of patients with confirmed dis-
tant metastases being tyrosinase negative 
(137, 138). Several studies have shown that 
analysis of additional markers together with 
tyrosinase can improve the detection of cir-
culating melanoma cells (137, 139).

We were first to confirm that MITF-M 
can be analyzed as a specific marker with 
a low threshold for the detection of circu-
lating melanoma cells by RT-PCR (140). In 
that study, we have shown that analysis of 
MITF-M as an additional marker to tyrosi-
nase improves the detection of circulating 
melanoma cells in melanoma patients (140). 
Koyanagi et al. have subsequently shown 
that MITF detection in blood by real-time 
quantitative RT-PCR is a significant inde-
pendent prognostic factor for relapse-free 
and overall survival and can indicate sub-
clinical metastatic disease and predict treat-
ment outcome in melanoma patients (141). 
In a recent study we investigated MITF as a 
marker for the detection of circulating mel-
anoma cells by RT-PCR on 201 melanoma 
patients in all stages of the disease (142). In 
this study positive value of MITF was asso-
ciated with significantly shorter overall sur-
vival and progression-free survival.

A recently identified splice variant of 
MITF-M, MITF-Mdel is widely expressed 
in melanocytes, melanoma cell lines and 
tissues, but almost undetectable in non-
melanoma cell lines or peripheral blood 
mononuclear cells from healthy donors 
(27). Therefore, MITF-Mdel is also a prom-
ising marker for the detection of circulating 
melanoma cells by RT-PCR.

MITF as target for melanoma therapy

The role of MITF in normal melanocyte de-
velopment and in melanoma progression 
and survival makes it a potential target for 
melanoma therapy. Electroporation medi-
ated transfer of short interfering RNA spe-
cific for MITF gene was studied in mice with 
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melanoma. That treatment induced apop-
totic death of tumour cells leading to signifi-
cant growth retardation of the tumour (143). 
Another approach using histone deacetylase 
(HDAC) inhibitors has been studied show-
ing that HDAC inhibitors suppress the ex-
pression of MITF-M in melanoma cells and 
systemic HDAC inhibitors treatment signifi-
cantly suppressed the growth of melanoma in 
a human melanoma xenograft model (144).

Conclusion

Results of many different studies described in 
this review have established MITF as a mas-
ter regulator of melanocyte and melanoma 
function, development and survival. MITF 
is already routinely applied as melanoma 
marker and has shown promising results as 
a target for melanoma therapy. Still, regula-
tion of MITF in melanocytes and melanoma 
cells is immensely intricate and consequent-
ly its role and importance in melanoma is 
complex and depending on different factors. 
As described previously, just one example of 
complex role of MITF in melanocytes and 
melanoma is finding that MITF has both 
proproliferative and antiproliferative effects. 
Also, as described, MITF gene is amplified 
in a proportion of melanomas where MITF 
plays a role of a “lineage specific” oncogene, 
while in another proportion of melanomas 
MITF is not expressed at all. Therefore, fur-
ther elucidation of complex regulation and 
effects of MITF in different genetic, intracel-
lular and extracellular contexts could enable 
further and clinically more relevant applica-
tions of MITF, primarily in the management 
of melanoma patients.
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