

UDK 611(082)

ISSN 1512-8245

AKADEMIJA NAUKA I UMJETNOSTI BOSNE I HERCEGOVINE
АКАДЕМИЈА НАУКА И УМЈЕТНОСТИ БОСНЕ И ХЕРЦЕГОВИНЕ
ACADEMY OF SCIENCES AND ARTS OF BOSNIA AND HERZEGOVINA

RADOVI

KNJIGA XCII

Odjeljenje medicinskih nauka

Knjiga 31

Centar za medicinska istraživanja

Knjiga 2

Redakcioni odbor

Jela Grujić-Vasić, Ladislav Ožegović,
Faruk Konjhodžić, Slobodan Loga

Urednik

Džemal Rezaković

redovni član Akademije nauka i umjetnosti
Bosne i Hercegovine

SARAJEVO 2003

INFLUENCE OF SAMPLE SIZE ON THE RESULTS OF BIOEQUIVALENCE STUDIES

Zulić I, Kusturica J, Potkonjak D, Kapić E, Mulabegović N, Loga-Zec S, Rakanović-Todić M, Bećić F, Krošnjar S.¹

Abstract

Great number of drugs coming from different manufacturers is available on the market.

The biocquivalence studies give substantial evidence if these drugs, given in same doses and under similar conditions, have similar bioavailability. Studies of bioequivalence are performed on healthy young volunteers in crossover designs and artificially controlled environment to minimize factors, other than the drug, which can affect bioavailability. They usually include 24 healthy volunteers with about 20 blood analyzes giving a total of 500.

This kind of research is of big importance for the determination of pharmacokinetic drug characteristics but is very expensive, especially in small countries.

Considering the importance of cost decrement we set the hypothesis that bioequivalence studies can be performed on smaller number of subjects. This hypothesis is confirmed by the results of our analysis (6) included in cross-over study can be an adequate number.

Introduction

A fundamental hypothesis of clinical pharmacokinetics is that a relationship exists between the pharmacological or toxic response to a drug, and the accessible concentration of the drug. This hypothesis has been documented for many drugs, although it is apparent for some drugs that no clear of simple relationship has been found between pharmacologic efect and concentration in plasma (Goodman&Gillman's, 1996).

Several alternative and equivalent representations of drug disposition can be used to describe the relationship between dose and concentration, and can be modified to account for the passage of time. In

¹ Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Sarajevo, Sarajevo, B&H

the early days of pharmacokinetics, emphasis was placed on half-life to describe the time course of drug concentration. Now we usually think of clearance and volume of distribution as the essential parameters of pharmacokinetic processes because of close mapping of these parameters to identifiable functional and structural features of the body (Holford, 1992).

Various physiological and morbidity variables that dictate adjustment of dosage in individual patients often do so as a result of modification of pharmacokinetic parameters. Three most important parameters are drug clearance, volume of drug distribution and its bioavailability. These factors coupled with dosage, determine the concentration of a drug at its sites of action and hence the intensity of its effects as a function of time.

When the bioavailability of different preparations, salts of forms of a drug are compared at the same molar dose, under similar experimental conditions, and are found to be the same, the drugs are said to be bioequivalent. Bioequivalence of two drugs means that the rate and extent of absorption are extremely similar, the amount of each preparation entering bloodstream does not significantly differ, and the preparations are chemically equivalent (Spilker, 1991).

Pharmacokinetic parameters used to establish bioequivalence are the peak plasma concentration achieved (C_{max}), the time to achieve this peak concentration (T_{max}), and the area under the blood (or plasma) time-concentration (AUC_0). Ideally the two curves should be superimposable, so one may conclude that the two drugs are bioequivalent, but in practice the curves may differ. According to FDA, the product is considered bioequivalent if blood levels of two drugs agree within 20%. The FDA also has a principle that 75% of patients should have plasma levels that are between 75% and 125% of the reference standard (Spilker, 1991).

The most important factors, which can affect bioavailability of a medicine, are: age of patient, food ingested, genetic history, physiological capacity of the liver to metabolise, disease, interactions with other medicines, kidney function. To minimise these factors, studies of bioequivalence should be performed on healthy young volunteers in crossover designs, so each patient receives both treatments, and in artificially controlled environment.

Minimum number of 12 evaluated subjects, should be included in any bioequivalence study (CDER, 2001). Generally, this type of pharmacokinetic researches usually include 24 healthy volunteers. However, these researches are very expensive, and our intention is to demonstrate that the same results can be obtained with smaller number of included subjects. This can be a way to decrease the pharmacokinetic research expense.

In order to obtain reliable results, the bioanalytical methods used to determine active principle and/or its biotransformation product in any suitable matrix should meet requirements of specificity, accuracy, sensitivity and precision.

The knowledge of the active substance quality is also very important. In case that products are prepared according to GMP rules, pharmacokinetic profiles are predictable.

The goal of this meta-analysis is to show that the same results from pharmacokinetic studies could be obtained from 24, 12 or 6 healthy volunteers.

Methods

Study design

In order to prove no significant difference between the pharmacokinetic results compiled from differently sized groups of subjects we compared data from 3 different bioequivalence studies. Statistical comparison has been made between the compiled results from 24 subject groups, 12 subject groups and 6 subject groups. The groups of 6 and 12 subjects were randomly assigned from the original groups (groups of 23, 24, 26 subjects).

Inclusion criteria

Bioequivalence studies to be done according to GCP.

In these studies we included minimum 24 or 12 subjects.

Analyzed studies

Three different bioequivalence studies were included in this analysis: bioequivalence study of sulpiride, bioequivalence study of lisinopril and bioequivalence study of norfloxacin.

Randomisation assignment

A subject number used in the randomisation schedule was assigned to each subject included in the study.

Statistical data analysis

Statistical analysis included data compiled from tabulated pharmacokinetic parameters with summary statistics of the individual study. Statistical analysis was done by statistical programs: Pharma/PCS Version 2.03, Pharmacologic Calculation System; Microsoft Excel 2002; Sigma Stat for Windows Version 2.03, The following parameters were included in the analysis: Cmax, tmax, Ka, Ke, AUC and AUC. Bioequivalence was conformed by Westlake and Hauck tests.

Results and Discussion

BIOEQUIVALENCE OF TWO SULPIRIDE-BASED PREPARATIONS

Study of sulpiride was designed as randomised two-way crossover single blind study with healthy male subjects who received a single oral dose of three 50 mg-capsules (150 mg of sulpiride in total).

Table 1: Mean values of sulpiride in serum

Sampling time (h)	DRUG A capsules	DRUG A capsules	Comparative drug capsules	Comparative drug capsules
	26 subjects group I	12 subjects group II	26 subjects group III	12 subjects group IV
T (h)	Mean concentration (ng/mL)	Mean concentration (ng/mL)	Mean concentration (ng/mL)	Mean concentration (ng/mL)
0.0	1.70± 02.46	2.94± 2.18	2.28±02.17	1.57±02.34
0.5	10.48± 8.67	8.25±13.44	11.13±14.18	10.95±09.55
0.75	39.62± 34.64	29.22±20.04	40.61±33.20	36.40±29.36
1	70.90± 48.30	64.37±36.48	72.66±51.96	67.94±37.32
1.25	105.96± 57.87	101.06±59.15	112.48±81.50	105.70±56.60
1.5	123.53± 69.48	137.99±71.47	135.64±86.34	126.63±79.66
1.75	153.88± 79.39	147.75±64.95	140.15±68.73	155.29±94.99
2.0	168.65± 79.56	168.02±73.79	160.42±72.33	163.80±72.23
2.5	186.08± 82.88	206.73±75.44	193.05±77.28	188.31±66.12
3.0	214.92±118.27	254.12±87.82	227.48±92.64	192.32±79.05
4.0	203.53± 81.08	225.65±64.98	206.62±76.54	198.00±68.78
6.0	134.91± 53.09	166.24±36.97	146.62±45.18	135.35±52.45
8.0	102.80± 44.50	124.74 ±16.85	113.96±26.76	99.99±38.99
12.0	70.04± 22.52	81.36±16.29	74.49±20.27	74.74±24.84
24.0	37.62± 11.31	45.80±20.73	42.03±15.68	37.84±11.28
36.0	22.95± 07.01	21.08±06.00	21.52±05.83	21.87±06.35
Statistical significance (t-test)	n.s.			
95 percent C.I. for difference of means group I/III	: -54.423 to 47.727			
95 percent C.I. for difference of means group I/II	: -62.850 to 45.631			
95 percent C.I. for difference of means group II/IV	: -42.863 to 63.940			
95 percent C.I. for difference of means group III/IV	: -44.906 to 55.461			

Subjects, aged from 18 to 48 years were screened for inclusion into the trial. In order to accomplish that 24 evaluated male subjects complete the

study, 26 subjects were included in the study. Sampling for the pharmacokinetic evaluation was performed according to the following schedule: pre-dose, 30 minutes, 45 minute, 2 hours, 2 hours nad 30 minutes, 3, 4, 6, 8, 12, 24, 36 hours post dose. The following parameters were calculated from the serum concentration: C_{max} , t_{max} , α , β , $t_{1/2}$, KA, KE, AUC and AUC_{∞} .

Statistical analyses did not detect any difference in mean plasma concentrations at any blood collection time point between two products when the sample size was 24 or 12 subjects (Table 1.).

The statistical analysis of non-transformed data is shown in Table 2. The mean and standard deviation of both formulations in 24 and 12 subject groups were almost same. The t-test was also performed, showing no statistical difference.

Table 2: Values of pharmacokinetic parameters detected in 26 and 12 subjects

Pharmacokinetic parameters	DRUG A capsules	Comparative drug capsules	Statistical significance 12/6 subjects (t-test)
	26 subjects	26 subjects	
C_{max} (ng/mL)	240±110	258±94	
T_{max} (h)	3.0±0.7	3.1±0.7	
K_c	0.042±0.017	0.048±0.016	
K_a	0.343±0.150	0.347±0.144	
$AUC_{(0-\infty)}$ (ng/mL h)	3278±977	3225±813	
Statistical significance (t-test)		n.s.	
	DRUG A capsules	Comparative drug capsules	n.s.
Pharmacokinetic parameters	12 subjects	12 subjects	
C_{max} (ng/mL)	235±78.988	284±77.338	
T_{max} (h)	2.9±0.85	3.0±0.86	
K_c	0.045±0.019	0.053±0.015	
K_a	0.329±0.171	0.338±0.1	
$AUC_{(0-\infty)}$ (ng/mL h)	3261±1140	3267±813	
Statistical significance (t-test)		n.s.	

Mean resistance time and mean absorption time following the calculation of AUMC by trapezoid rule are shown in Table 3 and Table 4.

Table 3: Values of AUMC calculated by trapezoid method

Sampling time	DRUG A capsules		Comparative drug capsules	
	26 subjects	12 subjects	26 subjects	12 subjects
t (h)	AUMC (ng/mL)h ²	AUMC (ng/mL)h ²	AUMC (ng/mL)h ²	AUMC (ng/mL)h ²
0.0	1.310	1031	1.391	1.368
0.5	4.369	4.156	4.503	3.933
0.75	12.577	14.511	12.890	11.429
1	25.419	37.476	26.658	24.008
1.25	39.719	77.554	43.008	38.648
1.5	56.826	133.420	56.091	55.405
1.75	75.827	204.815	70.763	71.923
2.0	200.632	418.123	200.872	199.598
2.5	277.498	737.924	291.272	261.941
3.0	729.466	1570.411	754.467	684.000
4.0	1623.642	3470.463	1706.230	1604.100
6.0	1631.922	5465.851	1791.434	1612.036
8.0	3334.464	9414.531	3611.200	3392.000
12.0	10486.512	21869.307	1145.200	10830.672
24.0	10375.776	33019.587	10740.000	10174.248
36.0	42628.000	27110.500	26900.000	25712.359
AUMC ₀₋₃₆ (ng/mL)h ²	71503.959	60130.087	57665.979	54677.668
AUMC _{0-∞} (ng/mL)h ²	72050.482	70671.587	58114.312	65615.168

Table 4: Mean absorption and mean resistance time in different sample sized groups

	DRUG A	DRUG A	Comparative drug	Comparative drug
	26 subjects	12 subjects	26 subjects	12 subjects
MRT (h)	21.98	21.67	18.01	20.08
MAT (h)	-1.82	- 0.54	-2.82	- 1.21

Bioequivalence of drug A and comparative drug evaluated in 26 and 12 subjects is confirmed by Hauck test, Table 5.

Table 5: Hauck test of bioequivalency

Sample size	Hauck test
26 subjects	N-1=25 T = 3.154602 E-02 δ = 4.561751 E-03 p = 1.18047 E-04
12 subjects	N-1=11 T = .355591 δ = 2.956155 E-03 p = 8.257926 E-04

BIOEQUIVALENCE OF TWO LISINOPRIL-BASED PREPARATIONS

Study of lisinopril was designed as randomised two-way crossover single blind study with healthy male subjects who received a single oral dose of 20 mg-tablet. 12 healthy subjects, aged from 24 to 35 years, were included in the study. Sampling for the pharmacokinetic evaluation was performed according to the following schedule: 0,5, 1, 1,5, 2, 3, 4, 6, 8, 12 and 24 hours post dose.

Table 6: Mean values of lisinopril in serum

Sampling time (h)	DRUG B tablets	DRUG B tablets	Comparative drug tablets	Comparative drug tablets				
	12 subjects	6 subjects	12 subjects	6 subjects				
t (h)	Mean concentration (ng/mL)	Mean concentration (ng/mL)	Mean concentration (ng/mL)	Mean concentration (ng/mL)				
0.5	0.95± 0.33	1.11± 0.34	1.08± 0.31	1.07± 0.30				
1.0	3.70± 1.76	4.39± 2.13	3.62± 1.56	3.63± 1.95				
1.5	9.32± 5.06	11.28± 5.99	8.30± 5.49	9.46± 7.55				
2.0	17.51± 8.06	20.30±10.24	15.62± 8.51	17.01± 1.33				
3.0	37.19±13.,10	41.95±16.21	34.28±12.03	36.32±13.59				
4.0	56.14±16.58	64.13±17.84	49.48±14.30	53.08±15.65				
6.0	68.77±23.40	80.71±26.47	69.35±15.71	74.71±17.50				
8.0	65.28±22.25	78.24±22.48	65.21±20.80	10.59±27.21				
12.0	51.03±20.20	60.67±20.71	53.84±21.31	60.96±24.16				
24.0	15.14±10.00	21.27±11.28	15.82±10.32	1.07± 0.30				
Statistical significance (t-test)	n.s.							
95 percent confidence interval for difference of means I/II: -32.707 to 20.907								
95 percent confidence interval for difference of means III/IV: -30.024 to 20.284								
95 percent confidence interval for difference of means II/IV: -38.932 to 15.702								
95 percent confidence interval for difference of means I/III: -23.755 to 25.445								

Serum concentrations time profile (means \pm SD) following intake of single oral dose is shown in Table 6. The serum concentration time curve was very similar after administration of the two preparations in different size groups.

The mean values (\pm SD) of pharmacokinetic parameters for the detected evaluation of bioequivalence are shown in Table 7. There are no differences of statistical significance.

Table 7: Values of pharmacokinetic parameters detected in 12 and 6 subjects

Pharmacokinetic parameters	DRUG B tablets	Comparative drug tablets	Statistical significance 12/6 subjects (t-test)
	12 subjects	12 subjects	
C_{max} (ng/mL)	70 \pm 23	71 \pm 18	
T_{max} (h)	6.5 \pm 0.9	6.3 \pm 0.78	
K_e	0.1 \pm 0.02	0.17 \pm 0.13	
K_a	0.36 \pm 0.06	0.31 \pm 0.09	
$AUC_{(0-\infty)}$ (ng/mL h)	1190 \pm 498	1188 \pm 534	
Statistical significance (t-test)		n.s.	
	DRUG B tablets	Comparative drug tablets	
Pharmacokinetic parameters	6 subjects	6 subjects	
C_{max} (ng/mL)	82 \pm 25	79 \pm 20	
T_{max} (h)	6.7 \pm 1	6.6 \pm 1.0	
K_e	0.09 \pm 0.01	0.21 \pm 0.17	
K_a	0.35 \pm 0.06	0.33 \pm 0.08	
$AUC_{(0-\infty)}$ (ng/mL.h)	1451 \pm 570	1470 \pm 623	
Statistical significance (t-test)		n.s.	

Values of AUMC, MRT and MAT are shown in Table 8 and Table 9.

Table 8: Values of AUMC calculated by trapezoid method

Sampling time	DRUG B tablets		Comparative drug tablets	
	12 subjects	6 subjects	12 subjects	6 subjects
t (h)	AUMC (ng/mL)h ²	AUMC (ng/mL)h ²	AUMC (ng/mL)h ²	AUMC (ng/mL)h ²
0.5	1.045	1.17	1.039	1.04
1.0	4.422	5.261	4.016	4.447
1.5	12.253	14.379	10.923	12.046
2.0	73.284	83.231	67.044	71.488
3	168.027	191.185	150.384	160.641
4	637.08	740.79	614.004	660.61
6	934.8	1110.198	937.684	1028.558
8	2268.96	1707.8	2335.328	2623.6
12	5852.16	7430.328	6153.984	7302.528
24	5204.36	8722.05	2886.469	2804.97
AUMC₀₋₂₄ (ng/mL)h²	15156.391	21006.392	13160.875	14669.929
AUMC_{0-∞} (ng/mL)h²	16700.268	23841.992	13746.69	15140.439

Table 9: Mean absorption time and mean resistance time in different sample sized groups

	DRUG B tablets	DRUG B tablets	Comparative drug tablets	Comparative drug tablets
	12 subjects	6 subjects	12 subjects	6 subjects
MRT (h)	14.03	16.43	11.57	10.3
MAT (h)	3.9	4.9	5.5	5.5

Bioequivalence of the products in differently sized groups is confirmed by Hauck and Westlake test, Table 10.

Table 10: Test of bioequivalencies

Sample size	Hauck test	Westlake test
12 subjects	N - 1 = 11 T = 8.168178 E-02 δ = 8.462206 E-03 p = 5.856753 E-04	2.397265 E-22. 6.082929E +24 Kan=3.948
6 subjects	N - 1 = 5 T = 0.2145618 δ = 5.280028 E-03 p = 9.949803 E-04	1,329071 E-33, 1.701412 E +38 Kan=4.893

BIOEQUIVALENCE OF TWO NORFLOXACIN-BASED PREPARATIONS

Study of norfloxacin was designed as randomised two-way crossover single blind study with healthy male subjects who received a single oral dose of 400 mg tablet. 23 healthy subjects were included in the study. Sampling for the pharmacokinetic evaluation was performed according to the following schedule: 0,5, 1, 1,25, 1,5, 1,75, 2, 2,25, 2,5, 3, 3,5,4, 6, 8, 10 and 12 hours post dose.

Serum concentrations time profile (means \pm SD) following the intake of a single oral dose is shown in Table 11. The mean both preparation values, after their administrations in 24 and 12 subject groups, are similar.

Table 11: Mean values of norfloxacin in serum

Sampling time	DRUG C tablets	DRUG C tablets	Comparative drug tablets	Comparative drug tablets				
	23 subjects	12 subjects	23 subjects	12 subjects				
t (h)	Mean concentration (ng/mL)	Mean concentration (ng/mL)	Mean concentration (ng/mL)	Mean concentration (ng/mL)				
0.50	187 \pm 180	145 \pm 105	362 \pm 366	270 \pm 229				
1.00	528 \pm 331	546 \pm 329	686 \pm 519	572 \pm 375				
1.25	733 \pm 442	890 \pm 468	829 \pm 550	815 \pm 505				
1.50	886 \pm 551	1094 \pm 539	852 \pm 493	845 \pm 465				
1.75	970 \pm 618	1258 \pm 630	886 \pm 484	957 \pm 480				
2.00	985 \pm 599	1267 \pm 606	877 \pm 473	955 \pm 462				
2.25	936 \pm 541	1192 \pm 505	863 \pm 492	958 \pm 492				
2.50	924 \pm 492	1131 \pm 429	851 \pm 451	908 \pm 404				
3.00	697 \pm 368	861 \pm 331	640 \pm 297	672 \pm 263				
3.50	549 \pm 285	636 \pm 242	554 \pm 269	597 \pm 267				
4.00	477 \pm 243	571 \pm 223	465 \pm 209	481 \pm 191				
6.00	324 \pm 171	376 \pm 155	307 \pm 149	320 \pm 142				
8.00	226 \pm 131	266 \pm 143	213 \pm 109	225 \pm 109				
10.00	162 \pm 109	197 \pm 120	159 \pm 90	164 \pm 89				
12.00	123 \pm 92	157 \pm 85	104 \pm 87	122 \pm 86				
Statistical significance (t-test)	n.s.							
95 percent confidence interval for difference of means I/II: -404.705 to 154.038								
95 percent confidence interval for difference of means I/III: -223.797 to 231.664								
95 percent confidence interval for difference of means II/IV: -161.178 to 391.311								
95 percent confidence interval for difference of means III/IV: -238.083 to 209.683								

The mean values ($\pm SD$) of pharmacokinetic parameters for the evaluation of bioequivalence are shown in Table 12. There are no differences of statistical significance. The calculated AUMC, MRT and MAT values are shown in Table 14 and Table 13.

Table 12: Values of pharmacokinetic paameters detected in 23 and 12 subjects

Pharmacokinetic parameters	DRUG C tablets	Comparative drug tablets	Statistical significance 12/6 subjects (t-test)
	23 subjects	23 subjects	
C_{max} (ng/mL)	1179 \pm 453	1204 \pm 453	
T_{max} (h)	1.8 \pm 0.5	1.8 \pm 0.6	
K_c	0.212 \pm 0.056	0.215 \pm 0.033	
K_a	3.002 \pm 1.712	3.261 \pm 2.206	
$AUC_{(0-\infty)}$ (ng/mL h)	6244 \pm 3539	5399 \pm 2290	
Statistical significance (t-test)	n.s.		
	DRUG C tablets	Comparative drug tablets	n.s.
Pharmacokinetic parameters	12 subjects	12 subjects	
C_{max} (ng/mL)	1267 \pm 585	1202 \pm 329	
T_{max} (h)	1.9 \pm 0.3	1.9 \pm 0.1	
K_c	0.212 \pm 0.068	0.212 \pm 0.039	
K_a	2.824 \pm 1.308	3.724 \pm 2.215	
$AUC_{(0-\infty)}$ (ng/mL h)	6941 \pm 3666	5219 \pm 2331	
Statistical significance (t-test)	n.s.		

Bioequivalence of drug C and comparative drug, evaluated on 23 and 12 subjects was conformed by Hauck and Westlake test, Table 15.

Table 13: Values of AUMC calculated by trapezoid method

Sampling time	DRUG C tablets		Comparative drug tablets	
	23 subjects	12 subjects	23 subjects	12 subjects
t (h)	AUMC (ng/mL)h ²	AUMC (ng/mL)h ²	AUMC (ng/mL)h ²	AUMC (ng/mL)h ²
0.50	155	155	217	177
1.00	181	207	215	199
1.25	281	344	289	286
1.50	370	480	354	368
1.75	458	592	413	448
2.00	510	317	462	508
2.25	552	689	509	553
2.50	1100	707	1012	1071
3.00	1003	1202	965	1026
3.50	957	1128	950	1003
4.00	3852	4540	3702	3844
6.00	3752	4384	3546	3720
8.00	3428	4098	3294	3440
10.00	3096	3854	2838	3104
12.00	9696	11377	8066	9678
AUMC ₀₋₁₂ (ng/mL)h ²	32159	34075	26830	29427
AUMC _{0-∞} (ng/mL)h ²	32159	37153	26830	32200

Table 14: Mean absorption time and mean resistance time

Parameter	DRUG C tablets	Comparative drug tablets	DRUG C tablets	Comparative drug tablets
	23 subjects	12 subjects	23 subjects	12 subjects
MRT (h)	5.149	5.352	4.968	6.168
MAT (h)	0.433	0.947	0.317	1.482

Table 15: Test of bioequivalencies

Sample size	Hauck test	Westlake test
23 subject	N-1=22 T = 4.469213E-02 δ = 9.98002E-04 p = 2.658665E-04	0, 5.393475 E + 37 Kan = 0.433
12 subjects	N-1=11 T = 0.7673818 δ = 5.867081 E-04 p = 0.658665 E-04	8.710414 E-39, 1.701412E + 38 Kan = 0.947

Conclusion

On the basis of the above-presented statistical evaluation it is concluded that there are no significant differences in the bioequivalence final results between differently sized sample groups. Pharmacokinetic parameters in bioequivalence studies, when performed on healthy young volunteers and in previously determined conditions, are mostly affected by physic-chemical characteristics of the medicine, so significant differences in individual pharmacokinetics can not be expected. This hypothesis is confirmed by the results of our analysis. Considering that the number of dropouts determines sample size, the number of included subjects has to be adjusted to the circumstances. In the situation when we have a good patient compliance and when severe adverse effects are not expected, the minimal sample size of 12 subjects (approved by FDA) is adequate. Our study results show that even a smaller number of subjects (6) included in cross-over study represents an adequate number. This hypothesis should be considered and explored further more for the reasons of importance of pharmacokinetics investigation costs decrement.

Apstrakt

Na tržištu su dostupni mnogi lijekovi istog sastava proizvedeni od strane različitih proizvodžača. Studije bioekvivalence daju osnovne informacije o tome da li takvi lijekovi, primjenjeni u jednakoj dozi i u sličnim uvjetima imaju približno jednaku bioraspoloživost u organizmu. Da bi se minimizirali faktori koji nisu od strane lijeka, a utiču na njegovu bioraspoloživost, studije bioekvivalence se sprovode sa zdravim dobrovoljcima u *crossover* dizajnu i u kontroliranim uvjetima. U studije se po pravilu uključuju 24 zdrava dobrovoljca za koje je potrebno pojedinačno izvršiti dvadesetak analiza krvi ili ukupno oko 500.

Ovakva ispitivanja su važna za procjenu farmakokinetičkih karakteristika lijekova, ali su i izuzetno skupa, pogotovo u malim zemljama.

Na osnovu temeljnih odredbi bioraspoloživosti, a u cilju smanjenja (za naše uvjete veoma značajnog aspekta) cijene ovakvih istraživanja, postavili smo hipotezu da se studije bioekvivalence mogu sprovesti i sa manjim brojem ispitanika.

Ova teza je potvrđena rezultatima naše analize. Rezltati su pokazali da čak i manji broj ispitanika (6), u *crossover* dizajnu studije, može biti adekvatan za sigurne studije bioekvivalence.

Literature

Holford, N. (2001): *Clinical Pharmacokinetics and Pharmaco-dynamics: The Quantitative Basis for Therapeutics*, in: Clinical Pharmacology Basic Principles in Therapeutics Ed: K. L. Melmon, H.F. Morrelli, B.B. Hoffman, D.W. Nierenberg, Third Edition 37: 951-964.

Goodman and Gilman's (1996): *The Pharmacological Basis of Therapeutics*, Ninth edition. Eds.: Hardman, J.G. and Limbird, L.E. McGraw-Hill, Health Professions Division 1-27.

CDER (2001): *Guidance for Industry; Statistical Approaches to Establishing Bioequivalence*. US Department of Health and Human Services; Food and Drug Administration. Centre for Drug Evaluation and Research.

Spilker B (1991): *Guide to Clinical Trials*. Raven Press, New York.

